Some Results on the Sandor-Smarandache Function
نویسندگان
چکیده
منابع مشابه
Some New Results concerning the Smarandache Ceil Function
In this article we present two new results concerning the Smarandache Ceil function. The first result proposes an equation for the number of fixed-point number of the Smarandache ceil function. Based on this result we prove that the average of the Smarandache ceil function is ) (n Θ .
متن کاملSome Properties of the Pseudo-smarandache Function
Charles Ashbacher [1] has posed a number of questions relating to the pseudo-Smarandache function Z(n). In this note we show that the ratio of consecutive values Z(n + 1)/Z(n) and Z(n − 1)/Z(n) are unbounded; that Z(2n)/Z(n) is unbounded; that n/Z(n) takes every integer value infinitely often; and that the series ∑ n 1/Z(n) is convergent for any α > 1.
متن کاملOn the Pseudo-Smarandache Function
Kashihara[2] defined the Pseudo-Smarandache function Z by m(m+l) } Properties of this function have been studied in [1], [2] etc. 1. By answering a question by C. Ashbacher, Maohua Le proved that S(Z(n»-Z(S(n» changes signs infmitely often. Put d s,z (n) = I S(Z(n»-Z(S(s» I We will prove first that lim inf d s,z (n) ~ 1 (1) n-oo and (2) n-+oo p(p+l) Indeed, let n = , where p is an odd prime. Th...
متن کاملSome identities involving the near pseudo Smarandache function
For any positive integer n and fixed integer t ≥ 1, we define function Ut(n) = min{k : 1 t + 2 t + · · · + n t + k = m, n | m, k ∈ N + , t ∈ N + }, where n ∈ N + , m ∈ N + , which is a new pseudo Smarandache function. The main purpose of this paper is using the elementary method to study the properties of Ut(n), and obtain some interesting identities involving function Ut(n). In reference [1], ...
متن کاملBounding the Smarandache Function
Let S (n), for n E N+ denote the Smarandache function, then S (n) is defined as the smallest m E N+, with nlm!. From the definition one can easily deduce that if n = prlp~2 .. . p~k is the canonical prime factorization of n, then Sen) = max{S(pfi)}, where the maximum is taken over the i's from 1 to k. This observation illustrates the importance of being able to calculate the Smarandache functio...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Scientific Research
سال: 2021
ISSN: 2070-0245,2070-0237
DOI: 10.3329/jsr.v13i1.47721