Some Results on the Sandor-Smarandache Function

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Some New Results concerning the Smarandache Ceil Function

In this article we present two new results concerning the Smarandache Ceil function. The first result proposes an equation for the number of fixed-point number of the Smarandache ceil function. Based on this result we prove that the average of the Smarandache ceil function is ) (n Θ .

متن کامل

Some Properties of the Pseudo-smarandache Function

Charles Ashbacher [1] has posed a number of questions relating to the pseudo-Smarandache function Z(n). In this note we show that the ratio of consecutive values Z(n + 1)/Z(n) and Z(n − 1)/Z(n) are unbounded; that Z(2n)/Z(n) is unbounded; that n/Z(n) takes every integer value infinitely often; and that the series ∑ n 1/Z(n) is convergent for any α > 1.

متن کامل

On the Pseudo-Smarandache Function

Kashihara[2] defined the Pseudo-Smarandache function Z by m(m+l) } Properties of this function have been studied in [1], [2] etc. 1. By answering a question by C. Ashbacher, Maohua Le proved that S(Z(n»-Z(S(n» changes signs infmitely often. Put d s,z (n) = I S(Z(n»-Z(S(s» I We will prove first that lim inf d s,z (n) ~ 1 (1) n-oo and (2) n-+oo p(p+l) Indeed, let n = , where p is an odd prime. Th...

متن کامل

Some identities involving the near pseudo Smarandache function

For any positive integer n and fixed integer t ≥ 1, we define function Ut(n) = min{k : 1 t + 2 t + · · · + n t + k = m, n | m, k ∈ N + , t ∈ N + }, where n ∈ N + , m ∈ N + , which is a new pseudo Smarandache function. The main purpose of this paper is using the elementary method to study the properties of Ut(n), and obtain some interesting identities involving function Ut(n). In reference [1], ...

متن کامل

Bounding the Smarandache Function

Let S (n), for n E N+ denote the Smarandache function, then S (n) is defined as the smallest m E N+, with nlm!. From the definition one can easily deduce that if n = prlp~2 .. . p~k is the canonical prime factorization of n, then Sen) = max{S(pfi)}, where the maximum is taken over the i's from 1 to k. This observation illustrates the importance of being able to calculate the Smarandache functio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Scientific Research

سال: 2021

ISSN: 2070-0245,2070-0237

DOI: 10.3329/jsr.v13i1.47721